A 4-Week Preoperative Ketogenic Micronutrient-Enriched Diet Is Effective in Reducing Body Weight, Left Hepatic Lobe Volume, and Micronutrient Deficiencies in Patients Undergoing Bariatric Surgery: a Prospective Pilot Study.

This study demonstrates that a 4-week preoperative KMED is safe and effective in reducing BW, left hepatic lobe volume, and correcting MD in obese patients scheduled for BS. Decreases in BW, left hepatic lobe volume, and an amelioration of patient micronutrient status were all highly significantly. All patients showed a high frequency of acceptability and compliance in following the diet. No adverse side effects were reported.

Outcomes of a Digitally Delivered Low-Carbohydrate Type 2 Diabetes Self-Management Program: 1-Year Results of a Single-Arm Longitudinal Study

Of the 743 participants with a starting HbA1c at or above the type 2 diabetes threshold of 6.5%, 195 (26.2%) reduced their HbA1c to below the threshold while taking no glucose-lowering medications or just metformin. Of the participants who were taking at least one hypoglycemic medication at baseline, 40.4% (289/714) reduced one or more of these medications. Almost half (46.40%, 464/1000) of all participants lost at least 5% of their body weight. Overall, glycemic control and weight loss improved, especially for participants who completed all 10 modules of the program. For example, participants with elevated baseline HbA1c (≥7.5%) who engaged with all 10 weekly modules reduced their HbA1c from 9.2% to 7.1% (P<.001) and lost an average of 6.9% of their body weight (P<.001).

Efficacy of a Moderately Low Carbohydrate Diet in a 36-Month Observational Study of Japanese Patients with Type 2 Diabetes

AUTHOR’S ABSTRACT: We previously showed that a non-calorie-restricted, moderately low-carbohydrate diet (mLCD) is more effective than caloric restriction for glycemic and lipid profile control in patients with type 2 diabetes. To determine whether mLCD intervention is sustainable, effective, and safe over a long period, we performed a 36-month observational study. We sequentially enrolled 200 patients with type 2 diabetes and taught them how to follow the mLCD. We compared the following parameters pre- and post-dietary intervention in an outpatient setting: glycated hemoglobin (HbA1c), body weight, lipid profile (total cholesterol, low and high-density lipoprotein cholesterol, triglycerides), systolic and diastolic blood pressure, liver enzymes (aspartate aminotransferase, alanine aminotransferase), and renal function (urea nitrogen, creatinine, estimated glomerular filtration rate). Data from 157 participants were analyzed (43 were lost to follow-up). The following parameters decreased over the period of study: HbA1c (from 8.0 ± 1.5% to 7.5 ± 1.3%, p < 0.0001) and alanine aminotransferase (from 29.9 ± 23.6 to 26.2 ± 18.4 IL/L, p = 0.009). Parameters that increased were high-density lipoprotein cholesterol (from 58.9 ± 15.9 to 61.2 ± 17.4 mg/dL, p = 0.001) and urea nitrogen (from 15.9 ± 5.2 to 17.0 ± 5.4 mg/dL, p = 0.003). Over 36 months, the mLCD intervention showed sustained effectiveness (without safety concerns) in improving HbA1c, lipid profile, and liver enzymes in Japanese patients with type 2 diabetes.

Effect of dietary carbohydrate restriction on glycemic control in adults with diabetes: A systematic review and meta-analysis.

Carbohydrate-restricted diets, in particular those that restrict carbohydrate to < 26% of total energy, produced greater reductions in HbA1c at 3 months (WMD -0.47%, 95% CI: -0.71, -0.23) and 6 months (WMD -0.36%, 95% CI: -0.62, -0.09), with no significant difference at 12 or 24 months. There was no difference between moderately restricted (26-45% of total energy) and high carbohydrate diets at any time point. Although there are issues with the quality of the evidence, this review suggests that carbohydrate-restricted diets could be offered to people living with diabetes as part of an individualised management plan.

Effect of modified Atkins diet in adults with drug-resistant focal epilepsy: A randomized clinical trial.

In this RCT investigating the effect of an adjunctive modified atkins diet on seizure frequency in adults iwht difficult to treat focal epilepsy, the authors found a significant reduction in seizure frequency in the diet group compared to the controls, but only for a moderate benefit (>25% seizure reduction) among those who completed the intervention. Seizure response varied considerably between individuals, perhaps negatively influenced by a drop in serum concentrations of antiepileptic drugs.

Optimal clinical management of children receiving dietary therapies for epilepsy: Updated recommendations of the International Ketogenic Diet Study Group.

Ketogenic dietary therapies (KDTs) are established, effective nonpharmacologic treatments for intractable childhood epilepsy. For many years KDTs were implemented differently throughout the world due to lack of consistent protocols. In 2009, an expert consensus guideline for the management of children on KDTwas published, focusing on topics of patient selection, pre&dash;KDT counseling and evaluation, diet choice and attributes, implementation, supplementation, follow&dash;up, side events, and KDT discontinuation. It has been helpful in outlining a state&dash;of&dash;the&dash;art protocol, standardizing KDT for multicenter clinical trials, and identifying areas of controversy and uncertainty for future research. Now one decade later, the organizers and authors of this guideline present a revised version with additional authors, in order to include recent research, especially regarding other dietary treatments, clarifying indications for use, side effects during initiation and ongoing use, value of supplements, and methods of KDT discontinuation. In addition, authors completed a survey of their institution’s practices, which was compared to responses from the original consensus survey, to show trends in management over the last 10 years.

Effectiveness and Safety of a Novel Care Model for the Management of Type 2 Diabetes at 1 Year: An Open-Label, Non-Randomized, Controlled Study.

INTRODUCTION:

Carbohydrate restriction markedly improves glycemic control in patients with type 2 diabetes (T2D) but necessitates prompt medication changes. Therefore, we assessed the effectiveness and safety of a novel care model providing continuous remote care with medication management based on biometric feedback combined with the metabolic approach of nutritional ketosis for T2D management.

METHODS:

We conducted an open-label, non-randomized, controlled, before-and-after 1-year study of this continuous care intervention (CCI) and usual care (UC). Primary outcomes were glycosylated hemoglobin (HbA1c), weight, and medication use. Secondary outcomes included fasting serum glucose and insulin, HOMA-IR, blood lipids and lipoproteins, liver and kidney function markers, and high-sensitivity C-reactive protein (hsCRP).

RESULTS:

349 adults with T2D enrolled: CCI: n = 262 [mean (SD); 54 (8) years, 116.5 (25.9) kg, 40.4 (8.8) kg m2, 92% obese, 88% prescribed T2D medication]; UC: n = 87 (52 (10) years, 105.6 (22.15) kg, 36.72 (7.26) kg m2, 82% obese, 87% prescribed T2D medication]. 218 participants (83%) remained enrolled in the CCI at 1 year. Intention-to-treat analysis of the CCI (mean ± SE) revealed HbA1c declined from 59.6 ± 1.0 to 45.2 ± 0.8 mmol mol-1 (7.6 ± 0.09% to 6.3 ± 0.07%, P < 1.0 × 10-16), weight declined 13.8 ± 0.71 kg (P < 1.0 × 10-16), and T2D medication prescription other than metformin declined from 56.9 ± 3.1% to 29.7 ± 3.0% (P < 1.0 × 10-16). Insulin therapy was reduced or eliminated in 94% of users; sulfonylureas were entirely eliminated in the CCI. No adverse events were attributed to the CCI. Additional CCI 1-year effects were HOMA-IR – 55% (P = 3.2 × 10-5), hsCRP – 39% (P < 1.0 × 10-16), triglycerides – 24% (P < 1.0 × 10-16), HDL-cholesterol + 18% (P < 1.0 × 10-16), and LDL-cholesterol + 10% (P = 5.1 × 10-5); serum creatinine and liver enzymes (ALT, AST, and ALP) declined (P ≤ 0.0001), and apolipoprotein B was unchanged (P = 0.37). UC participants had no significant changes in biomarkers or T2D medication prescription at 1 year.

CONCLUSIONS:

These results demonstrate that a novel metabolic and continuous remote care model can support adults with T2D to safely improve HbA1c, weight, and other biomarkers while reducing diabetes medication use. 

Effect of Low-Fat vs Low-Carbohydrate Diet on 12-Month Weight Loss in Overweight Adults and the Association with Genotype Pattern of Insulin Secretion.

IMPORTANCE:

Dietary modification remains key to successful weight loss. Yet, no one dietary strategy is consistently superior to others for the general population. Previous research suggests genotype or insulin-glucose dynamics may modify the effects of diets.

OBJECTIVE:

To determine the effect of a healthy low-fat (HLF) diet vs a healthy low-carbohydrate (HLC) diet on weight change and if genotype pattern or insulin secretion are related to the dietary effects on weight loss.

DESIGN, SETTING, AND PARTICIPANTS:

The Diet Intervention Examining The Factors Interacting with Treatment Success (DIETFITS) randomized clinical trial included 609 adults aged 18 to 50 years without diabetes with a body mass index between 28 and 40. The trial enrollment was from January 29, 2013, through April 14, 2015; the date of final follow-up was May 16, 2016. Participants were randomized to the 12-month HLF or HLC diet. The study also tested whether 3 single-nucleotide polymorphism multilocus genotype responsiveness patterns or insulin secretion (INS-30; blood concentration of insulin 30 minutes after a glucose challenge) were associated with weight loss.

INTERVENTIONS:

Health educators delivered the behavior modification intervention to HLF (n = 305) and HLC (n = 304) participants via 22 diet-specific small group sessions administered over 12 months. The sessions focused on ways to achieve the lowest fat or carbohydrate intake that could be maintained long-term and emphasized diet quality.

MAIN OUTCOMES AND MEASURES:

Primary outcome was 12-month weight change and determination of whether there were significant interactions among diet type and genotype pattern, diet and insulin secretion, and diet and weight loss.

RESULTS:

Among 609 participants randomized (mean age, 40 [SD, 7] years; 57% women; mean body mass index, 33 [SD, 3]; 244 [40%] had a low-fat genotype; 180 [30%] had a low-carbohydrate genotype; mean baseline INS-30, 93 μIU/mL), 481 (79%) completed the trial. In the HLF vs HLC diets, respectively, the mean 12-month macronutrient distributions were 48% vs 30% for carbohydrates, 29% vs 45% for fat, and 21% vs 23% for protein. Weight change at 12 months was -5.3 kg for the HLF diet vs -6.0 kg for the HLC diet (mean between-group difference, 0.7 kg [95% CI, -0.2 to 1.6 kg]). There was no significant diet-genotype pattern interaction (P = .20) or diet-insulin secretion (INS-30) interaction (P = .47) with 12-month weight loss. There were 18 adverse events or serious adverse events that were evenly distributed across the 2 diet groups.

CONCLUSIONS AND RELEVANCE:

In this 12-month weight loss diet study, there was no significant difference in weight change between a healthy low-fat diet vs a healthy low-carbohydrate diet, and neither genotype pattern nor baseline insulin secretion was associated with the dietary effects on weight loss. In the context of these 2 common weight loss diet approaches, neither of the 2 hypothesized predisposing factors was helpful in identifying which diet was better for whom.

Favorable effects of a ketogenic diet on physical function, perceived energy and food cravings in women with ovarian or endometrial cancer: a randomized controlled trial

Abstract: Ketogenic diets (KDs) are gaining attention as a potential adjuvant therapy for cancer, but data are limited for KDs’ effects on quality of life. We hypothesized that the KD would (1) improve mental and physical function, including energy levels, (2) reduce hunger, and (3) diminish sweet and starchy food cravings in women with ovarian or endometrial cancer. Participants were randomized to a KD (70:25:5 energy from fat, protein, and carbohydrate) or the American Cancer Society diet (ACS: high-fiber, lower-fat). Questionnaires were administered at baseline and after 12 weeks on the assigned diet to assess changes in mental and physical health, perceived energy, appetite, and food cravings. We assessed both between-group differences and within-group changes using ANCOVA and paired t-tests, respectively. After 12 weeks, there was a significant between-group difference in adjusted physical function scores (p < 0.05), and KD participants not receiving chemotherapy reported a significant within-group reduction in fatigue (p < 0.05). There were no significant between-group differences in mental function, hunger, or appetite. There was a significant between-group difference in adjusted cravings for starchy foods and fast food fats at 12 weeks (p < 0.05 for both), with the KD group demonstrating less frequent cravings than the ACS. In conclusion, in women with ovarian or endometrial cancer, a KD does not negatively affect quality of life and in fact may improve physical function, increase energy, and diminish specific food cravings. This trial was registered at ClinicalTrials.gov as NCT03171506.