Effects of carbohydrate-restricted diets on low-density lipoprotein cholesterol levels in overweight and obese adults: a systematic review and meta-analysis

A systematic review and meta-analyses were conducted to compare the effects of very low, low, and moderate carbohydrate, higher fat diets versus high-carbohydrate, low-fat diets on low-density lipoprotein cholesterol and other lipid markers in overweight/obese adults. Large randomized controlled trials of at least 6 months duration with carbohydrate restriction appear superior in improving lipid markers when compared with low-fat diets. Dietary guidelines should consider carbohydrate restriction as an alternative dietary strategy for the prevention/management of dyslipidemia for populations with cardiometabolic risk.

Low-carbohydrate diets differing in carbohydrate restriction improve cardiometabolic and anthropometric markers in healthy adults: A randomised clinical trial

Low-carbohydrate, high-fat diets have a positive effect on markers of health. Adherence to the allocation of carbohydrate was more easily achieved in MCD, and LCD groups compared to VLCKD and there were comparable improvements in weight loss and waist circumference and greater improvements in HDL-c and TG with greater carbohydrate restriction.

Changes in blood lipid concentrations associated with changes in intake of dietary saturated fat in the context of a healthy low-carbohydrate weight-loss diet: a secondary analysis of the Diet Intervention Examining the Factors Interacting with Treatment Success (DIETFITS) trial

In the DIETFITS trial, 609 generally healthy adults, aged 18-50 years, with BMIs of 28-40 kg/m2 were randomly assigned to a healthy low-fat (HLF) or healthy low carb (HLC) diet for 12 months. Participants consumed an average of 12-18% of calories from SFA. An increase of %SFA, without significant changes in absolute saturated fat intake, over 12 months was associated with a statistically significant decrease in triglycerides in the context of a weight-loss study in which participants simultaneously decreased carbohydrate intake. The association between increase in %SFA and decrease in triglycerides was no longer significant when adjusting for 12-month change in carbohydrate intake, suggesting carbohydrate intake may be a mediator of this relationship.

An Online Intervention Comparing a Very Low-Carbohydrate Ketogenic Diet and Lifestyle Recommendations Versus a Plate Method Diet in Overweight Individuals With Type 2 Diabetes: A Randomized Controlled Trial.

A greater percentage of participants lost at least 5% of their body weight in the LC intervention versus the control group. Participants in the intervention group lowered their triglyceride levels more than participants in the control group  Dropout was 8% (1/12) and 46% (6/13) for the intervention and control groups, respectively (P=.07). The online delivery of this approach gives it the potential to have wider impact in the  treatment of type 2 diabetes.

Association of dietary nutrients with blood lipids and blood pressure in 18 countries: a cross-sectional analysis from the PURE study.

BACKGROUND:

The relation between dietary nutrients and cardiovascular disease risk markers in many regions worldwide is unknown. In this study, we investigated the effect of dietary nutrients on blood lipids and blood pressure, two of the most important risk factors for cardiovascular disease, in low-income, middle-income, and high-income countries.

METHODS:

We studied 125 287 participants from 18 countries in North America, South America, Europe, Africa, and Asia in the Prospective Urban Rural Epidemiology (PURE) study. Habitual food intake was measured with validated food frequency questionnaires. We assessed the associations between nutrients (total fats, saturated fatty acids, monounsaturated fatty acids, polyunsaturated fatty acids, carbohydrates, protein, and dietary cholesterol) and cardiovascular disease risk markers using multilevel modelling. The effect of isocaloric replacement of saturated fatty acids with other fats and carbohydrates was determined overall and by levels of intakes by use of nutrient density models. We did simulation modelling in which we assumed that the effects of saturated fatty acids on cardiovascular disease events was solely related to their association through an individual risk marker, and then compared these simulated risk marker-based estimates with directly observed associations of saturated fatty acids with cardiovascular disease events.

FINDINGS:

Participants were enrolled into the study from Jan 1, 2003, to March 31, 2013. Intake of total fat and each type of fat was associated with higher concentrations of total cholesterol and LDL cholesterol, but also with higher HDL cholesterol and apolipoprotein A1 (ApoA1), and lower triglycerides, ratio of total cholesterol to HDL cholesterol, ratio of triglycerides to HDL cholesterol, and ratio of apolipoprotein B (ApoB) to ApoA1 (all ptrend<0·0001). Higher carbohydrate intake was associated with lower total cholesterol, LDL cholesterol, and ApoB, but also with lower HDL cholesterol and ApoA1, and higher triglycerides, ratio of total cholesterol to HDL cholesterol, ratio of triglycerides to HDL cholesterol, and ApoB-to-ApoA1 ratio (all ptrend<0·0001, apart from ApoB [ptrend=0·0014]). Higher intakes of total fat, saturated fatty acids, and carbohydrates were associated with higher blood pressure, whereas higher protein intake was associated with lower blood pressure. Replacement of saturated fatty acids with carbohydrates was associated with the most adverse effects on lipids, whereas replacement of saturated fatty acids with unsaturated fats improved some risk markers (LDL cholesterol and blood pressure), but seemed to worsen others (HDL cholesterol and triglycerides). The observed associations between saturated fatty acids and cardiovascular disease events were approximated by the simulated associations mediated through the effects on the ApoB-to-ApoA1 ratio, but not with other lipid markers including LDL cholesterol.

INTERPRETATION:

Our data are at odds with current recommendations to reduce total fat and saturated fats. Reducing saturated fatty acid intake and replacing it with carbohydrate has an adverse effect on blood lipids. Substituting saturated fatty acids with unsaturated fats might improve some risk markers, but might worsen others. Simulations suggest that ApoB-to-ApoA1 ratio probably provides the best overall indication of the effect of saturated fatty acids on cardiovascular disease risk among the markers tested. Focusing on a single lipid marker such as LDL cholesterol alone does not capture the net clinical effects of nutrients on cardiovascular risk.

The effects of a low-carbohydrate diet on oxygen saturation in heart failure patients: a randomized controlled clinical trial.

In a parallel group randomized controlled clinical trial, 88 ambulatory patients were randomly assigned to a low-carbohydrate diet group (40% carbohydrates, 20% protein and 40% fats or a standard diet group (50% carbohydrates, 20% protein and 30% fats for two months. Diets were normocaloric in both groups.After two months of follow-up, the low-carbohydrate diet group decreased the carbohydrate consumption and had improved oxygen saturation (93.0 ± 4.4 to 94.6 ± 3.2, p = 0.02), while the standard diet group had decreased (94.90 ± 2.4 to 94.0 ± 2.9, p = 0.03).

Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study.

High carbohydrate intake was associated with higher risk of total mortality, whereas total fat and individual types of fat were related to lower total mortality. Total fat and types of fat were not associated with cardiovascular disease, myocardial infarction, or cardiovascular disease mortality, whereas saturated fat had an inverse association with stroke. Global dietary guidelines should be reconsidered in light of these findings.